numpyの案件一覧

過去に募集したエンジニア、データサイエンティスト、マーケターの案件を中心に掲載しています。
非公開案件を多数保有していますので、ご希望のイメージに近い案件をクリックして無料サポートにお申込みください。
専門コンサルタントがヒアリングを通じて最適な案件をご提案いたします。
単価や稼働日数などの条件面についてもお気軽にご相談ください。

該当件数:26

numpyの案件を探す

案件内容

自社事業成長支援を目的としたKPI設計、データ可視化、ビジネスデータ分析を担うポジションです。
依頼業務は以下短期的長期的とスコープがあります。
[ 短期的 ]
・ ユーザーの行動/心理に関する仮説検証/仮説探索
・ A/Bテストによる施策の効果検証
・ 統計的因果推論による施策の効果検証
・ 上記に関する開発/マーケティング側とのコミュニケーション
[ 長期的 ]
・ 定型レポートのワークフロー開発/ダッシュボード構築
・ コンテンツやオンラインイベントのレコメンド
・ 検索エンジンのアルゴリズム改良
・ コンテンツの画像情報/音声情報を用いた機械学習

必須スキル

[ データサイエンス ]
・ 統計検定2級レベルの知識
・ 機械学習・統計モデルの構築、およびモデルに基づく分析の経験
・ マーケティング又は教育領域のデータ分析経験
[ ビジネス ]
・ 論理的思考力(定量思考力/要約力/仮説構築能力など)
・ ドキュメント作成能力 (見栄えではなく、構成の組み立て方やわかりやすさが担保出来る)
・ 開発/マーケティング側とコミュニケーションしながら分析を推進できる
[ エンジニアリング ]
・ SQLを利用してデータを加工・集計した経験
・ 100~200行のコードを読み書きできること
・ 結合, CTE (WITH句)・サブクエリ, ウィンドウ関数が利用できること
・ Pythonによる集計やモデル構築・可視化の経験
・ numpy, pandas などの集計用ライブラリの利用経験
・ scikit-learn などの機械学習ライブラリの利用経験
・ matplotlib, seaborn などの可視化ライブラリの利用経験
・ Git・GitHubの利用経験

案件内容

[ポジション]:AIエンジニア

・機械学習/深層学習の研究/アルゴリズム実装

・大手企業と連携した研究/ソリューション開発、自社プロダクトの開発

必須スキル

・Scipy/Numpy, Scikit-Learn, Pandas, Tensorflow, Keras, Chainer, PyTorchなどのフレームワークを利用した機械学習における実装経験
・機械学習の理論的背景を理解
・機械学習のモデルの理解(線形回帰, アンサンブル学習, 勾配ブースティング, RNN, CNN, GCN, GAN, YOLOなど)
・論文のモデルを実装する能力
・複数のセンサやデバイスを用いたシステムの構築・運用経験
・機械学習を用いたロボット制御システムのインテグレート経験
・高いコミュニケーションスキル(ビジネスレベルの日本語)

案件内容

[ポジション]:AIエンジニア

弊社クライアントの機械学習エンジニアチーム、ビジネスチームと共に、大手企業、研究機関、自治体とのプロジェクトに参画頂き、学習モデルの開発に従事頂きます。

基本的なチーム体制は弊社機械学習エンジニア、コンサルタントメンバーとチームで進行します。

必須スキル

・ビジネスレベルの日本語
・論文のモデルを実装する能力
・Scipy/Numpy, Scikit-Learn, Pandas, Tensorflow, Keras, Chainer, PyTorchなどのフレームワークを利用した機械学習におけるプロジェクトにおける実装経験

案件内容

データ分析では、データ・プレパレーション領域と性能テストを主に行っていただく予定です。
並行して行っている案件で、パブリッククラウドのPaaSを使用した設計・開発を行っており、
こちらは、GCP案件とAzure案件になります。
データ分析案件で1.0で働いていただくか、データ分析案件0.5、GCP案件 or Azure案件で0.5という形で働いていただくか、
相談し案件に参画いただきます。(GCP案件 と Azure案件だけで1.0にはなりません。)

必須スキル

Python

案件内容
■業務内容:
データサイエンティストが様々な領域に対して作成した、
プライシングモデル等の技術を実際のサービスへ活⽤していくための
データサービス基盤の開発および運⽤を⾏っていただきます。
必須スキル

・Java もしくはPython でのWeb サービスのサーバサイド開発運⽤経験
・AWS やGCP などのクラウド利⽤経験
・API 設計、開発経験
・Python ( numpy, pandas, scikitlearn ) を使ったデータ分析、システム構築経験
・機械学習/統計学についての基礎的な知識

案件内容 【開発環境】 ・言語:Python3.5 ・メインライブラリ:Pandas ・統計分析ライブラリ:scipy,sklearn,statsmodels,networkx,numpy ・その他:ApacheAirflow
必須スキル

・Python経験 ・もしくは他言語の豊富な経験

検索結果26件中21-26件