キャリア

2021/01/21

データ分析を仕事にする方法・就職先・スキル・転職方法・キャリアパス

デジタル化が進み社会の様々な分野でデータの活用が実施されるようになりました。大量のデータを扱う環境も整備されるなか、統計の知見をもとに解析業務を専門とするデータ分析職への注目が高まっています。

この記事では、データ分析に関する職業への新卒での就職先や中途採用での転職方法を紹介します。必要なスキル、仕事内容、年収、キャリアパスについても見てきましょう。

データ分析を仕事にするには

データ分析を専門とする仕事に就くには、特別な資格は必要ないとされています。とはいえ、大企業で研究職やR&Dなどの部門でデータ分析を任されている人には理系の博士号を持っている人が多いです。就職・転職の難易度は高く、専門知識を備えていることが必須条件になります。

近年注目されるデータサイエンス分野で就職するには、統計学や情報工学の力を扱えなくてはなりません。加えて、統計解析の知識があるだけでなく、データを収集し、活用したり、分析環境として運用できる形にベースを整える力も要求されるでしょう。データが何の目的で利用されるのかを見極め、ビジネスに応用できてこそ一人前のデータ分析者といえるのです。

データ分析の職種

一口にデータ分析職といっても、職種によっていくつかのタイプに分けることが可能です。大きく分けてアナリスト型とエンジニア型、研究開発型に分類されます。

アナリスト

アナリスト型のデータ分析者が行うのは、データから弱点や問題点、何かしらの予兆などを探し出し、分析結果をもとに改善方法や施策を提案することです。収益の向上やコスト削減、利用者増など目的は様々ですが、事業内容やゴールに応じた分析を行います。

ITベンダーやコンサルティング会社の分析者は、企業へビジネスの改善点を提案するため、統計学の知識やマーケティングの知識などが必要となる場合が多く、仮説を組み立てて分かりやすく説明する力が必要です。近年注目される「データサイエンティスト」は、このようなアナリスト型データ分析職の花形といえるでしょう。

エンジニア

エンジニア型のデータ分析者は、主に大規模なデータを扱う基盤環境を構築したり、統計的な手法やAIモデルを応用したアルゴリズムを既存の製品やサービスに実装したりする業務を担っています。

名前の通り、開発や実装よりの職業なので、プログラムのコーディングやデータエンジニアリングに精通している人に適したタイプです。職種名は「データサイエンティスト」「AIエンジニア」「機械学習エンジニア」など企業によりさまざまです。

研究開発

研究開発型のデータ分析者は、企業の開発部門や研究所に配属され、要素技術の研究や実験結果の解析・検証を行います。仕事内容としては、学者や研究者寄りのものが多く、統計学に精通しているのはもちろんのこと、学術的な論文を読み解いたり開発したアルゴリズムを実際に実装したりできる技術を備えていることも求められます。

データ分析の就職先

データ分析を生業にしたいのであれば、データ分析を専門とする企業や大手のIT企業に就職したり、研究機関やデータ分析部門に所属したりするという方法があります。レベルに差はあってもデータ分析を行っている企業は多数あるため、データ分析を志願する人は幅広い選択肢の中から自分に適した企業を選ぶことが可能です。

データ分析の仕事内容

データ分析には複雑なものというイメージがありますが、データ分析の仕事はプログラミングや統計だけではありません。以下ではデータ分析の仕事内容の詳細について紹介します。

分析対象・目的を知る

データ分析の仕事はまず分析対象となる商品やサービスについて知ることから始まります。どのような目的で誰をターゲットにした商品・サービスなのか把握していなければ、クライアントの求める分析結果を出すことが出来ないからです。

データ分析を仕事にする場合は、ただ分析するだけでなく、必要となる情報は何か考えながら分析する力が欠かせません。あくまで仕事で分析を行うため、自分よがりな分析にならないよう注意することが必要です。

必要なデータを収集する

クライアントが求める情報や対象の確認が済んだら、早速必要となるデータを収集していきます。データの収集にはプログラミング言語を利用することもあれば、会社が提供しているツールを利用することもあるでしょう。

データを集計・分析する

必要なデータの収集を終えたら、メインとなる分析作業をしていきます。データを表やグラフの形に直して集計し、得られたデータから本質的な問題を探るのです。クライアントが納得できるような資料を作成できるよう、データの見え方や見せ方を考えながら、分析を進めていくのがポイントです。

分析結果を報告する

最後は分析結果を資料にまとめて、社内やクライアントへの報告を行います。資料を報告する相手はデータの分析を専門的に扱っている人ではなく、商品やサービスのマーケティングを担当している人たちです。できるだけデータを初心者でも理解出来るよう、分かりやすい言葉でまとめなくてはなりません。

また、クライアントによって、直接打ち合わせをするのかメールでのやり取りで済ませるのか異なります。直接打ち合わせをする場合は、その場でうろたえることがないようにあらかじめ質問される内容を想定しておく必要があります。クライアントから信頼を得るためにも、コミュニケーションは積極的にとるよう心がけると良いでしょう。

データ分析者に必要なスキル

上記ではデータ分析を仕事にした場合に取り組む内容について紹介しました。では、実際にその仕事内容をこなすにはどのようなスキルが必要となるのか以下でみていきましょう。

ロジカルシンキング

定量的なデータを分析するために、ロジカルシンキングは欠かせないスキルです。データ分析は根拠に基づいて理論を考えなくてはならないので、論理的な思考方法は分析の基本となる力であるといえるでしょう。やみくもにデータを収集するのではなく、欲しい結論を得るために必要な情報を見極め、逆算的に情報を収集するなど、効率よく業務を進めていく上で仮説を持ち検証を進めることは役立ちます。

とはいえ、ガチガチに凝り固まった思考をしてしまうのも考えものであり、クライアントの要望に応じて臨機応変に対応できる力も必要です。

データ解析や統計の知識

当然ながら、データ分析の仕事を行うには専門的なデータ解析や統計の知識が必要となります。とりわけビッグデータの解析を行う場合には、より高度な技術や知識が必要です。

例えば、膨大な量のデータの分析にはAIを導入するケースがあり、機械学習の知識を備えていることが要求されるでしょう。主にAIエンジニアやデータエンジニアに求められる知識です。

資料作成能力

見落とされがちですが、データを整理して分かりやすい資料を作成する能力もデータ分析において大切です。データ分析で扱うデータの量が多い場合、それをそのまま資料にするとクライアントは状況を理解することができません。クライアントはデータ分析の専門家ではないことを念頭に、それでも理解してもらえる資料を作成する必要があるでしょう。

データを分析して終わりなのではなく、分析結果をわかりやすく素人に伝えるところまで含めて、データ分析者に求められるスキルになります。求められる資料はその都度変わってきますが、クライアントに合わせて柔軟に対応し、適切に説明できるスキルが要求されるのです。

データ分析者の平均年収

DODAのサイトを参考にみてみると、データ分析者の平均年収は522万円とされています。上記のデータは2019年に行われた調査によるもので、データサイエンティストの平均年収の集計です。実際に求人を確かめてみると、スキルによって年収に大きな差があることが分かります。

実務経験を積んだ経験豊富な人の年収は1,000万円弱に及び、未経験者の場合は300万円~400万円が相場です。なお、IT企業全体の平均年収は457万円であるため、データ分析の年収は比較的平均よりも高いといえるでしょう。

データ分析職に就くキャリアパス

以下ではデータ分析を仕事にしたい人のために、キャリアパスの例をいくつか紹介します。

大学・大学院から新卒で就職

まず、最も一般的なキャリアパスとして知られているのが、大学や大学院を卒業し、新卒でデータ分析を仕事に出来る企業へ就職する方法です。大学でデータ分析の際に役立つ統計解析やAIの活用方法について学び、その学びを武器に就職活動を行います。

理数系の大学で数学的な事を学ぶだけでなく、できればインターンなどを通して統計実務やBIツールなどについても学んでおくと、より周囲と差をつけることができるでしょう。

中途採用で転職

コンサルタントやマーケターなどビジネス分野でアナリストとして働いていた経験などがある場合、エンジニアとしての実務経験がなかったとしても他の職種よりデータ分析による課題解決への理解が高いです。

そのため、これまで培ってきた経験と知識をアピールすれば、ポテンシャルを重視する企業の中途採用枠などでデータ分析職への転職を狙うことが可能です。Rデータマイニングの学習から入るケースが多いでしょう。

統計学の知識がある人が転職

統計学を学んだ人が身につけている知識の中で、統計ソフトのRやSAS、SPSSなどの知識はデータ分析にも活用できます。データサイエンティストという職業は最近成立したばかりであり、未開拓の部分が多いです。そのため、データベースにアクセスして必要なデータを抽出する処理やプログラミング言語の知識を持っているだけでなく、統計学にも精通しており開発と分析の両面に幅広く対応出来る人材が求められています。余力があれば、機械学習やデータマイニングなどの論文にも目を通し、知見を広めておくのも有効的です。

プログラマーやSEから転職

プログラマーやSE(システムエンジニア)からデータ分析者に転職する際に足りないのはデータ分析の知識と経験です。プログラマーはプログラミングの実務経験を有しているため、PythonやSQLなどのコードに躓くことは少ないでしょう。

一方で、数学の基礎的な統計学を学び直したり、機械学習に時間を使ったりした方が効率が良いです。機械学習を学ぶためには統計学の知識が必要となるため、機械学習より先に統計学の学び直しを進めましょう。なお、ビジネスの問題は範囲が広いので、ケースバイケースで対応するのが賢明です。

未経験者がデータ分析者に転職する方法

未経験者がデータ分析の仕事に転職する方法は、主にプログラミング言語を身につけ、統計やデータ分析の課題を解決する経験を積み転職するか、実際に入社してキャリアをスタートするかの二つです。プログラミング言語を身につける方法には、スクールで学ぶか独学で学ぶなどの選択肢があります。以下で詳細をみていきましょう。

エンジニアとして入社し経験を積む

データ分析の実務経験を積む一番手っ取り早い方法は実際に企業に入社することです。企業が抱える課題を把握し、データを読み解きながら解決することで、調査、仮説立案、検証などの力を培うことができるでしょう。

未経験者を分析者として中途採用する企業はごく少数です。一方で、未経験者を対象にプログラマーやエンジニアとして採用募集を行う企業は多くあります。業務内容としては、データの前処理やインフラ基盤の管理などが中心ですが、まずは就職してIT技術者としての経験を積めば、IT未経験よりもデータ分析者への転職の可能性がぐんと高まるのです。

エンジニア採用後に配属された部署にもよりますが、マーケティングに関連する企業で仕事をすれば、統計や分析に関する業務にとりくみやすいです。システム開発とはいえ、マーケティングや分析に関する開発業務を行った経験を持っていることは、データ分析のキャリアに役立ちます。

R、Pythonを身につける

R、Pythonというのは、データ分析に関する現場で主流とされているプログラム言語です。エンジニアとして就職した後は、Pythonの習得をおこないましょう。プログラム言語のスキルを身に着け、Kaggleなどから題材を探して分析での課題解決も勉強します。社内でデータ分析者として活動できそうなプロジェクトがあれば、積極的に手をあげましょう。実務経験として職務経歴書に記載できる実績があれば、分析者としての転職もしやすくなります。

スクールで学んでから転職

プログラミングの技術を習得するにあたり、プログラミングスクールに通うのは有効な手段です。スクールであれば、社会人向けに時間帯びに考慮して授業を実施しているので、会社で働きながら勉強できます。

勉強するために設けられる期間は講座を提供する事業者によって異なりますが、半年から1年程度である場合がほとんどです。就職や転職の保証を行っているスクールもあるため、心強い存在といえるでしょう。

独学で学んでから転職

データ分析の知識は独学で習得することも可能です。特にスキルを身につけた後にフリーランスで働きたい方や転職したりしたい方に多いケースです。データ分析を独学で学ぶ人に向けた書籍やインターネットの講座が多数あるため、比較的安価な出費でスキルを身につけられます。

とはいえ、独学で学ぶのは容易なことではなく、範囲も広いため、専門の知識を有する人物から教えてもらうことをおすすめします。

データ分析職の将来性

データ分析は将来性のある仕事といえるのか、気になるデータ分析業の今後について解説します。

今後もデータの重要性は高まる

データ分析は今後さらに需要が高まる仕事であると考えられます。ビックデータの解析やクラウドの活用が幅広く進む現代において、データドリブンな意思決定に関心を寄せる経営者は増加しているからです。

データ分析をビジネスに反映することはまだ発展途上な状態であるため、これからどの程度のペースでデータ分析が利用されていくのかはわかりません。

しかし、大手求人サイトでデータ分析の専門知識を持つ人の求人が増え、比較的高い年収を習得していることを鑑みると、データ分析者の未来は明るいと考えられるでしょう。

スキル要件が整理され分業が進む

データ分析者に要求される知識の幅は広いですが、将来的にはスキル要件が整理され分業が進む可能性が考えられます。データの可視化やレポーティングを担当する「データアナリスト」、データアナリストが使用するデータ分析の環境を整える「データエンジニア」、開発をおこなう「機械学習エンジニア」など、それぞれの職種によって必要なスキルセットが整理され分業されれば、効率よく業務をこなすことができるでしょう。

未経験でもチャンスはある

未経験でもデータ分析の仕事に就くチャンスはあります。先述したとおり、スクールに通うなどしてプログラミングなどの知識を身につければ、データ分析のスキルを身に着けることが可能です。とはいえ、採用のハードルは高く、まったくの未経験ならキャリアチェンジまでに複数の転職をはさむなど工夫が必要です。険しい道のりかもしれませんが、今後の将来性を考えるとチャレンジする価値はあるでしょう。

関連記事Related Posts